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A block spin approach to the Euclidean ~b 4 field theory in three dimensions is 
proposed by using the three-dimensional version of Gawedzki and Kupiainen's 
block spin transformation method. The lattice ~b34 model recovers the rotation 
invariance in the continuum limit, when the coupling constant is small. 
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1. I N T R O D U C T I O N  

Euclidean ~b34 field theory ~1) has been developed by many authors and has 
become a mature branch of mathematical  physics (see the list O f papers in 
ref. 2). 'Among others, Brydges et  al. ~2) invented a simple and sophisticated 
construction: they found a clear picture obtaining a continuum limit 
without any renormalization group insight. However, their program to 
derive the rotation invariance and the uniqueness of the continuum limit 
seems somewhat complicated, and no one has succeeded in completing it. 
At the least, we have learned how far one can go without the renor- 
malization group philosophy and realize where it is needed. 

On the other hand, the block spin transformation method, which is a 
mathematical  realization of the renormalization group philosophy, yielded 
detailed information on the ~b44 model. ~3-5) While these works are concerned 
with problems on triviality, their technique is not restricted to the direction 
of triviality but is applicable to a model with a small coupling constant. 
Therefore (even if the critical phenomena in three dimensions are beyond 
our scope) it will be possible to study the ~4 field theory by the block spin 3 

transformation method, since its lattice approximation has a small 
coupling constant. 
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In this paper, I propose the block spin approach to the ~b 4 field theory 
and confirm that the lattice approximation considered in ref. 2 recovers the 
rotation invariance (6) in (each) continuum limit if the coupling constant is 
small. The method employed here is the three-dimensional version of the 
block spin analyses in refs. 3-5: I trace the trajectories of the block spin 
transformation for lattice ~b 4 models and estimate the mutual difference 
between two near trajectories. Applying the results to the "rotated" system, 
I derive the rotation invariance as an asymptotic disappearance of an 
irrelevant perturbation. 

A similar picture was pursued in ref. 8, which studied the U(1) Higgs 
model in three dimensions. However, we have to look into all the 
Schwinger functions and derive their rotation invariance, while in ref. 8, as 
long as the ~4 part is concerned, only a certain class of Schwinger functions 
is studied. See also ref. 7. 

I proceed as follows. In Section 2, I review the lattice approximation 
studied in ref. 2 and state my result together with a rough sketch of the 
method. In Section 3, I describe the outline of the block spin analysis of the 
lattice ~b 4 model and the scheme estimating the free energy of the effective 
theory. By applying the result in Section 3 to the lattice approximation, I 
show the rotation invariance in Section 4. The properties assumed for the 
"rotated" Gaussian kernel are shown in the Appendix. 

2. THE M O D E L  A N D  THE RESULT 

Here I introduce the lattice approximation for the ~b 4 field theory 
argued in ref. 2. Put L = 5 M for a sufficiently large integer M. Let N 1 and 
N2 be positive integers and put N = N  I + N  2, Now, discretizing [~3 as 
L-N12 3 and periodizing 2 3 as Ao=(Z/LN2)  3, define the regularized 
Schwinger functions by 

X 2  . . . . .  X21) = f d]d(NbN2)(O) OL~lxl ~L~'lx2 "'" OLmlx2! s(NI,N2)(-.,- 21 I, "a" 1 

x I , X 2 , . . . , X z l ~ L  N1A 0 (2.1) 

where d]j(NI'N2)(~) is the lattice ~b 4 measure on A o given by 

d[z (u l ' x~) (O)=exp[- -  A(UbNz)(~) ] I~ d~bjnormalization (2.2) 
u~ Ao 

1 
= ~  L-N~ 2 [ ~ u - - ~ v [ 2 + ~  L-3N'(m2t,'., --C) 2 ~ 

u,v ~ Ao u ~ Ao 
n.n, 

"~-L-3NI)~r 2 04u ( 2 . 3 )  

uE Ao 
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I choose the conStant c later [see (2.7)]. Replace the variable ~b, by LNI/2~u 
and rewrite the right-hand side of (2.1) as 

= L u~' f d#a~,(qS) exp[ - V(~ ~bLN,~ qSLN~2"'" qSLU~2~ (2.4) 

Here, d#G~(qS) denotes the standard massive Gaussian measure: 

( 1 1 2 ~2) 
d#a~,(~b) =exp - 5 ~ Iqi"-ql~12-5 m~ ~ ~ 

u,v ~ A 0 u ~ AO 
n.n. 

x H dq~./normalization 
u 6 A o  

with the covariance G ~t, and the potential V(~ is given by 

(2.5) 

u ~ A o  u e A o  

+4822 Z Z (GSutv)3r (2.6) 
u ~ A o  v ~ A o  

where I have put mo=L ~~rn,, 2o=L-N~2 , ,  and have chosen the 
constant c so that 

1 L-ZNIc st .2 (2.7) . . . .  62oG,~+48t~ o ~ (GS]o) 3 
2 v~_A 0 

holds. The above choice is essentially the same as the one in ref. 2. 
Now take the infinite-volume limit: 

S ( N l ) ( v .  .r Xzl )= lira S ( 2 ~ I ' N 2 ) ( X I  X 2 , . . .  , X Z l  ) 2l k~Vl,  "~2~'",  
N2 ~ oo 

X 1, X2~...~ X 2 I ~ L - N I ~ _  3 (2.8) 

I shall show later (Section 3.2, Remark 2) that the lattice system lies in the 
high-temperature phase for any N~ if 2,  > 0 is sufficiently small for a fixed 
m,  >0.  Then the infinite-volume limit is independent of the boundary 
conditions, and hence there is no difference between the present S(2~ vl) and 
the one in ref. 2. 

Next consider the continuum limit N1-~ oo. Assume that 2,  > 0 is 
sufficiently small for a fixed m,  > 0. It was shown (2) that, for each l, the 
series /~(N1)] is bounded in the space ~,([]~6/) of the tempered \~2l ,iN 1 = 1,2,.. 
distributions on ~6~, and hence that there is a convergent subsequence 
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(,~,(N]Jb/. , .  (The result in ref. 2 is in fact stronger than the above: the ~ 2 l  I j  = l , z , . . . "  

lattice spacing is not restricted to L-N~, N1 = 1, 2 ..... ) Now put 

S2I= lim S(2r (2.9) 
j + o o  

T h e o r e m .  The distribution $2~ has the rotation invariance if 2 ,  > 0 
is sufficiently small for a fixed m ,  > 0. 

The proof is based on the three-dimensional version of Gawedzki and 
Kupiainen's block spin transformation method and its extension by Hara  
and Tasaki. The program of the proof is as follows. 

1. The problem is reduced to a comparison between the lattice 
system and the "rotated" system by defining properly the rotation of the 
lattice. 

2. The difference between the original and the rotated lattice systems 
turns out to be a perturbation of the Gaussian measure. Then, based on the 
analysis of the rotated Gaussian measure in the Appendix, one can apply 
the bock spin analysis in Section 3. The effective potentials of the original 
and the rotated systems turn out to be close to each other after sufficiently 
many iterations of the block spin transformations. 

3. In the above, the loss of information due to the coarse-graining 
character of the block spin transformation might seem troublesome, but 
this is not the case: when iterating the block spin transformation, the 
difference between their effective theories tends to zero uniformly in the 
(original) lattice spacing L -x~. Therefore, if one starts with a sufficiently 
fine lattice, one can perform the block spin transformations sufficiently 
many times, while the lattice spacing of the effective theory is arbitrarily 
small. This means that one can deduce the rotation invariance with 
arbitrary accuracy. 

4. Lastly one has to evaluate the correlation function. For this pur- 
pose, a quadratic term Y'..,~ hu~bu~b~ with complex coefficients h.~ is added 
to the nth effective potential at a proper stage of the iterations where the 
loss of information is still small. Then the block spin transformation is con- 
tinued until the effective mass becomes sufficiently large. The large mass 
makes it possible to estimate the free energy as a holomorphic function of 
hu]s (see ref. 5), and hence one can bound the correlations (and its differen- 
ces), which are derivatives of the free energy with respect to h.~'s. Note that 
2 .  must be sufficiently small for a fixed m.  since the effective coupling 
constant must be small when the effective mass becomes large. 
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3. B L O C K  SPIN  A N A L Y S I S  

Let us define the ~4 model on Ao = (2~/LN7/) 3 in a slightly general con- 
text. Consider the following ~4 measu re  on NA0: 

d/~;.o,al0~(~b ) = e -  ~01(~) dpalol(~)/normalizatio n (3.1) 

where d#c(o)(~b ) is the Gaussian measure on NAo with mean 0 and 
covariance G (~ and the potential V(~162 is given by 

V(~ ~ ~b.-6s E GuuO u ( 0 )  2 
u~Ao u~Ao 

+482o 2 Z ~ (G~~ 3 ~ (3.2) 
u~Ao vEAo 

I do not restrict the Gaussian measure d#~(o~(~b) to the standard one with 
the ferromagnetic nearest neighbor interactions, but admit ones that satisfy 
the following properties: 

(G1) G (~ is a positive-definite symmetric matrix with the Ornstein- 
Zernike decay: 

0~<G(f)~<71(1 + [u--v[) ~ exp( -#o  [u -v [ )  (3.3) 

(G2) 
estimates: 

(G3) 

F (n) and sr (n) defined similarly as in ref. 3 have the following 

(n)l/2 2fllu -- vl [F.~ [ ~<?2e 

I ~(x,,u)l ~< 7 3 e - 2 # l x -  ul 

6?fl'(x n) __ ~(yn) ~'~4( e-2/~lx ul 

It holds that 

+ e-2~lY-ul), x C y  

~5]'/O 2 ~ E a(u 0) ~ ~)6~0 2, b/e A o (3.4) 
t~A 0 

3.1. T r a j e c t o r y  

Under the above assumptions, according to the program described in 
ref. 3, one can explicitly determine the forms of the effective potentials 
within the second-order perturbation and obtain bounds on the higher- 
order terms and on the large-field contributions. In particular, one has to 

822/54/1-2-12 
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get rid of the ultraviolet divergences using the mass counterterms. Consider 
the following form of the quadratic part of the nth effective potential: 

V([)(~)= -62" ~ +4822 ~("'oL-"Ao dx ~(')'L-'Ao dy(L"G~")~'L"Y)3 7z~ 

-4822 i @  + 7222~ 

- 7222 ~ + Z ~(2~')r(TJ) 
Y ~  L -nAO 

where the integral notation denotes the Riemann sum and 

(3.5) 

2=L')~o, f#(.) - / ~( ' )= x y  x y ~ - -  x y  x ~  

Cancellations of the ultraviolet singularities occur between the second and 
third terms and also in the first term. On the other hand, the quartic and 
the sextic parts are given by 

/ 

4, Y~ ] ----~ 
Y=A 

and 

where 

+ 
AIUA2= Y 

13~1 = 1 

(3.6) 

~(-)t ~u) (3.7) ~'(n) (~[.t) = __8~2 2 + --6, y t  6, Y 
AILAA2= Y 

]A,I = 1 

f ( , )  
= d x ~  4 , 

oA 
e t c .  
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These results together with the necessary bounds ensure that the block spin 
transformation can be iterated while the effective coupling constant 2~ is 
small�9 Note that I do not perform the correction of the coupling constant. 
For the present purpose, such a procedure is not only needless but also 
harmful, since one must dispense with a bound on the difference between 
(sg(fl~) - sd~,~))/lx - y[ and (sC(~n~) - sC(y~))/lx - y[. By the same reason, I omit 
the correction of the mass. 

Now consider the difference of two near trajectories. For Gaussian 
covariances G (~ and d(o)satisfying (G1)-(G3) (and their dotted versions), 
I further assume the following properties. 

(AG1) For x, y e L - ~ A o ,  it holds that 

(AG2) 

L n ~ ( o )  _ t n ~ ( O )  
~ L n x , L n y  ~ U L n x ,  L n y  

<~ 77 L - ' / 2  if X= y 

<. 7 7 L - ' ~ / Z ( I x - - y l - 2 + l )  if x r  

The matrices F ~"), ~,0,), and their dotted counterparts satisfy 

I (F(n) l /2)~ ,v  - t~(nH/2)uv[ ~ 28L 2"(1 + #2) e-2/~lu-vl 

where/~. = L~#o . 

Then one can inductively show that 

~(n) ff'(n) " 
P G ,  Y(~ )  - k, ~(~u) l 

~< 7101-(1 +~ t2) 6n"12-k ]log GI L -n/3 

q.. el3--k ]log G] 1~-- ~1 Y] 

[- r ] xe,,pLr k = 2 ,  4, 6, 8 (3.8) 

for gJ, ~Pe3e,~lXn(Y) and for some c~>0, where ~'('~ and ~-(n) stand for --8, Y --8, Y 
the remainder terms (~>8th-order parts) and en-21/4-_~ , ( . = 5 / 2 ( L 2 / 2 ) n e ~ ,  
I~ul r = maxy ~ r ] 5Uyl, and 

~ n ( Y ) = { ~ O r e c Y  I ]~F'/ly~01 and ]Ogqv<~O2} 

The constants 01, 02>0  are properly chosen. In the right-hand side of 
(3.8), the extra factor e x p ( G ~  ~ I g - ' y - q U y l 2 d y ) i s  introduced when one 
improves the large-field bound by means of the "consistency condition" 
(see ref. 3). Furthermore, the proof of (3.8) needs a scaling of the fields g* 
and q-'. This procedure, however, causes a harmful enlargement of the con- 
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stant ~,. The following lemma eliminates the difficulty by suppressing the 
dependence of the extra factor on the scaling. 

k e m m a  3.1. Let U and U- be even analytic functions on 
(1/2e,) L1/2fffn+l(X ) such that U(tT) and (s ]tl ~< 1, have zeros of the 
order k > 0 at t = 0. Then, the bound 

,U(T)- (J(~)l<~(6+P'T-qUlx)exp( 2L2~'~('+t).x '}[tx-tPxl2dx) 

T, ~e ~----~ L~/2~ff.+ ~(X) 

implies 

[ U ( T ) -  U(~)I <~ 36L -m k/4((~ ~_ pL1/4 i tit_ ~_tlx ) 

xexp ~,+~ I~-'pANdx T, ~ke3e~+~i~/;,+~(Y) oX 

ProoL The even function U has "the partial polarization" 

U(T, T')= U((T + T ' ) / 2 ) -  U((T-  T')/2) 

similarly, consider the function u(t, s) = 
principle to 

Defining O( ~u, T ' )  
U(tsT, tT ) -  (s t~) and apply the maximum 
t-ks-lu(t,s). | 

As for the large-field bound, we have 

I g~)~(~e)  - ~ ) ~ (  ~')1 

I 1 2 ~(') 
•  O[Dc~Xl--~e. D~xlT~I2 A l~:~]2dx 

4 (.(n) +20e. JD~x(Im Tx) 4 v (Im ~)4dx 

;.(n) 1 +C jx 17'x- ~Pxl= dx -c~(g )  

for Tees and (Fees where 
a v b = max(a, b), and 

@.(D, X) = { Te CXl there exist ~b ~ R A" and ~ e  ~ ( X )  such 

that 7 '=  ~4(")r + ~ o n  Xand  D(d(')~b) = D }  

(3.9) 

a A b = min(a, b), 
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Here, D ( ~ )  denotes the smallest paved set D satisfying 

] ~ux] ~< 201 exp[(~/10) d(x, ~ D ) ] ,  x ~ X 

where ~ D  = L "Ao\D. Put d(x, qS)= oo. The ~ , (D,  X) is defined similarly. 
In order to obtain (3.9), one first makes a straightforward bound for 
~ ' e  (1/6G) L1/2~n(D, X) and ~P' e (1/6G) LI/2~n(D, X). Next, for these ~P' 
and q~', one chooses the minimal paved sets D', / ) ' c D  such that 
~u' E (1/6G) zl/2~n(D', X) and ~ ' e  (1/6G) Zl/2~ ~, X) hold. Then, putting 
D * =  D ' w  f)' and using the consistency condition which expresses g~3D' in 
terms of g~W*, X ' c  X, one obtains (3.9). 

Remarks. 1. In the above arguments, the inductive step proceeds 

without assuming that ~'~") and ~")  were coming from the model defined 

by (3.1), (3.2)�9 That is, one can add some quadratic terms to ~"~ and ~") .  
(However, an addition of higher-order terms will be troublesome because 
of the consistency condition.) 

2. The effective potential V ~n/ was defined so that V~")(0)=0. 
However, when one estimates the partition function, one has to take the 
zeroth-order term into account. 

3. The implicit terms ~xn+~) k = 2 , 4 , 6 , 8 ,  and g~+l)  depend on - - k ,  Y ' 

~'(') k = 2, 4, 6, 8, and g~) such that X ~  L Y  but not on ones such that k,X~ 

X 4: L Y. This is the case for the zeroth-order term. 

3.2�9 Free Energy  

Under the assumptions (G1) (G3), one can show the following: 

712#2~<(6 ~n) ')~u~<713# 2, u ~ A  n (3.10) 

](G(r0 1)uv] <~?14~ne fllu-vl, u, v~An,  # # v  (3�9 

for a sufficiently large #,  (say ~>715), where A n = L  nA0c~Z 3. For the 
proof, see Proposition A.1 in ref. 5. 

Now choose an integer n .  such that 715 ~< #n. holds and G. is small  
(say 4716) SO that the block spin machine works. (Such an integer n .  
exists if 2o/kt 0 is small.) Stop the iteration here. 

According to ref. 5, one estimates the free energy for the n . th  effective 
theory: 

f = --log Z 

- l o g  f d#~~ e x p [ -  V~n*l(d~"*)~b)] (3.12) 
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In what follows, let us omit superscript and subscript n ,  and write 

G('*)= G, V('*)(x~'('*)O) = V(dO), A,. = A, etc. 

Introduce the matrices D and F defined by 

D,v=(G-1)u,6~, u, veA 

F=G 1 - D  

and rewrite Z as 

Z = Z o  1 2 f~ d/~D-,(q$) exp E - V(~4q$) ] 
P ~ •A IFL-n*Ao(P ) 

where 

Fx(p)={(Je~X~Alp.<~l(~l<p.+l,  u e X ~ A } ,  p=(p~)eY x~A - - +  

and 

1 ~bfq$) (3.13) Zo= f dlaD-l(~D)exp ( -  -~ 

P r o p o s i t i o n  3.2. For an integer n ,  satisfying 

71s<~#,, (3.14) 

/~n. ~ 716 (3.15) 

tx,, <<. 2 "*/4 (3.16) 

717~<n, (3.17) 

the free energies f and f defined by (3.12) (and its dotted version) have the 
expressions 

f = - ~ Wr + log Zo 
Y ~ L n*A 0 

f = -  Z Wy+log20 
Y c L-n*Ao 

with the bounds 

I myI, I I/VyI ~< exp[ - �89176 

I Wr - l~rl ~< 718 ( 1 + #•.) L "*/3 exp [ - -~ ~2,e(Y) ], 

(3.18) 

ycL-n .Ao  
(3.19) 

where Zo and 20 are defined by (3.13) and its dotted version, respectively. 



Block Spin Approach to ~4 Field Theory 181 

Remarks. 1. Wr (I'J/r) depends on 

V~"*) k = 2, 4, 6, ~'(~*) k,x , -8,x  , g~.)D 

(on their dotted versions, respectively) such that X c  Y and not on those 
such that X ~ Y. On the other hand, Z 0 and 2 0 are independent of all of 
them. 

2. As an application of the proposition, one can estimate the 
correlations. Add an extra term Y~ h,(b, (as in ref. 5) or Z h,~fb,fb~ (as in 
Section 4 of this paper) to the effective potential. Since correlations are 
derivatives of the free energy with respect to h, one can bound them by the 
maximum of Ifl on a certain complex region of h (see ref. 5 or this paper, 
Section 4). As a result, one finds that the present lattice model lies in the 
high-temperature region. At the same time, one obtains the ultraviolet 
stability bound for the Schwinger functions. 

4. R O T A T I O N  I N V A R I A N C E  

In this section, I prove the rotation invariance of the Schwinger 
function $2l as an application of Proposition 3.2. That is, I show the 
following equality: 

fi~3)2: dx 1 dx2 . . ,  dx2l S2j(xl, x2~, ) x2 

x OOk(Xk)-- COk(O--lXk) = 0  (4.1) 
1 k = l  

where ok s y(N3),  k = 1, 2,..., 2/, and O denotes the rotation around the z 
axis by the angle sin-l(3/5). The invariance with respect to any other 
rotation follows from (4.1), since ~-1 sin-l(3/5) is an irrational number. 

4.1. Lattice Approx imat ion  

I prove (4.1) by showing 

~ (o) 
lim dx I dx2 . . ,  dX2l s(N1)(X 

N i ~ o  ~ j (L_NIZ3)2  l 2l ~, 1,  X 2 , ' " ,  X21)  

x ~I COk(Xk)-- COk(O lxk) = 0  (4.2) 
k = l  k . = l  

and, if necessary, by taking a subsequence [see (2.9)]. For a while, fix 
e)k ~ 5:(~3), k = 1, 2,..., 2/. 
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Let Ex]N~ denote the point in L-NIT~ 3 nearest to X ~  3. Then, the 
mapping x ~  [O-~X]N, turns out to be a one-to-one correspondence on 
L-N~Y_ 3 and its inverse is given by [OX-IN,. Since co~, k =  1, 2,..., 2l, is 
uniformly continuous and the ultraviolet stability bound (2) yields 

~(0) dx2 . . .  dx2l [ S(Nl)l  x 2l ~, 1, x2,. . . ,  x21)[ < c o n s t  
O(L-NI~3)21 1 

(4.3) 

for a constant independent of N1 and x~, (4.2) is equivalent to: 

[( 0) 2l 
lim dxl dx2.., dx21 ~ COk(Xk) 

N1 ~ ctz J(L-NIZ3)2I k = l  

X F.K'(Nt)I~ 
L~2 !  [ 'a ' l  ~ X 2 ' " "  X21) 

(N1) - - S 2 l  ( [ O X I " ] N I ,  [OX2]NI  ..... [OX2I]NI)  ] = 0  (4 .4 )  

For v = 0, t, 2,..., we denote by F~ the family of all functions which have 
compact supports and are constant on each box 

B ~ ( L - ~ u ) = { x e ~ 3 1  I x - t - V u l < L  ~/2}, u e ~  3 

In order to show the equality (4.4) for coke 5e(~3), it suffices to show it for 
coke U~F~. Let co~eFv, k =  1, 2,..., 2l, and put D = L ~ ( U k s u p p  u~). Then, 
(4.4) is reduced to 

lim sup 
NI ~ c~ Ul,U2,...,u21CANl_VC~ D 

(o) dxl dx2 dx2t x [(o) . o[(O) 
~Bv(L vUl)  ~B~(L-Vu2) ~Bv(L ~u2l) 

X {S~f 'I(Xl,  X 2 ..... X2I ) 

--S(Nl)[rOX2l \L lJNl ' l  [OX2]NI , . . .  , [OX2I]NI)  } = 0  (4.5) 

Since (4.5) for an integer v = Vo follows from that for v = Vo + 1, one can 
assume that v is larger than an arbitrarily fixed constant. Hereafter, v and 
D will be fixed. 

4.2. Rotated System 

The function (N~) S21 (E I~XI ]NI  , EOX2]NI ..... [OX2I]NI)  is regarded as a 
correlation of another lattice system: call it the rotated system. Let [ x ]  
denote the point in 7/3 nearest to x e ~3. Then, the mapping defined by 
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/./(~ Z 31"--+ F O b / ]  E Z 3 has the inverse u~-.  [ O - ~ u ] .  For the infinite-volume 
l i m i t  ~ s t  of the standard Gaussian covariance G ~' [see (2.5)], define the 
m a t r i x  6 r~ by 

--rot __ --st 
G ~ - G ~ o~dE o~3, 

and denote its periodization on A 0 by G~~ 

Then, 

where 

u, v e Z 3 (4.6) 

rot __ G ~ -  ~] --rot G u + L N2w,v 
wff//3 

- lim ~(N~.N2)(.. X2,..., X2~) - -  ~ 2 l  \ ~ I  
N 2 ~  oo 

s ( N I '  N2)( ~(. , 2l '~"* X2~'"~ X21) 

(4.7) 

(4.8) 

e x p [ -  Vl~ ~r<,,r "@L<x,, (4.9) 

~o~(r ,1o Z 4 = ~, - 6,to Y~ Guu~bur~ 2 
ueAo u~Ao 

+4822 Z Z (Gru~ t)3 q~2 
uEAo v~Ao 

dX2I [-~(NI'N2)iv" L~21 ~'~1, X2~'" ,  X21) 

(4.10) 

As is seen from (4.11) [and (2.4), (4.9)], our task is to compare two 
~4 systems on Ao with distinct Gaussian measures d#a~, and d#G .... 

P r o p o s i t i o n  4.1. If mo<~l<~LNrno,  the Gaussian covariances 
G (~ G st and (~(o) = Grot satisfy (G1)-(G3)  (and their dotted versions) and 

4.3. Mutua l  Di f ference 

Thus, (4.5) is reduced to 

lira lira sup 
Nl~OO N2~x~ ul,u2,...,U2l~ANl_Vn D 

o) v dXl  
v(L- uI) VBv(L u21) 

~(NI'N2)( ~" ) ]  
- -  ~2 l  ' , ~ 1 '  X2~ '" ,  X21 = 0  (4.11) 
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(AG1) (AG2) for some positive constants /3, 7~, ~)3,))6, and 77 and for 
#o = m o / 1 6 .  

For the proof, see the Appendix. 
Assuming Proposition 4.1 and putting n = N 1 - v ,  we can apply the 

result in Section 3 to the original and the rotated systems. Note that ),, is 
small if v is sufficiently large. Consequently, we can write 

f(o) f(o) 
dX l d x 2  l v (Nx)t  ~ " '"  ~21  t'a'l~ x 2 , ' " ~  X 2 l )  

eBv(L vUl) Bv(L vU2l) 

= (Lvl/ZNI - v) f d~G(Ul-"}((~) exp[ - V (NI v)( .~(Nl  v)(fi)-] ~ul . . .  ~u21 

(4.12) 

and 

is(o) ~io) 
,(L-,u,) d x ,  �9 �9 o m(L-'~2,> dx2l  ~'(2~[1)(Xl , X2,,, ' ,  X21) 

[ L v l / ~  ~) f dgG(Nl-~(~b) exp[--  I?(N~ u)(s~(N~ ~)~b)] 4,1"" 4~2~ 

(4.13) 

where Z N , _  ~ and ZN,_ ~ are normalization constants. 
In order to calculate the right-hand sides of (4.12) and (4.13), add 

X huo~v 
U,VEANI-V 

to the effective potentials (see Section 3.1, Remark 1). We have to write the 
addendum in terms of the variable ~g: noting that 

~(N 1 v) ~ (Nl-v) ( ~ N ,  ~ ) ~ ) x d  x 
O. =,~o~> ( d  {u* ~>~)x dx = ~ 

put 

and 

V (NI V)(h; gJ) 

= v~N~ ~>(~') + Z 
u,V~AN 1 v 

v ( N 1 -  V)(h; (u) 

u,v ~ ANI _ v 

(,(N 1 v) ~(N1-- y) 
hu~JB0(~) dX Bo(,) d y  7~xggy (4.14) 

~ (Nl--V) ~.(NI-- v) 
huoB0(u, dxjB0(~> dy % % (4.15) 



Block Spin Approach to (p4 Field Theory 185 

where the complex variables h,~= h~,, u, t) eANI_~, are assumed to obey 
the bound 

.<~12 -~ (4.16) Ih=~l ~ NI--v  C ~']u--vl= (L 2 , )  3 e -~1~-~1 

(More precisely, add the term to the quadratic parts V~ u~- ~) and I/(2N~-~).) 
Note that the right-hand sides of (4.12) and (4.13) can be written in terms 
of the derivatives (at h,~ = 0) of 

and of 

log Z N I , N 2 , v ( h  ) ~" f d~G(Nl-V}(~ ) e x p [ -  V (N~ ~)(h; d (NI- v)~)] (4.17) 

log 2N,,&,dh) = f d#c,,~,-,.~(~b) exp[ - l~(u~-~)(h; sr (Nj- u)~b)] (4.18) 

respectively. Then, in order to obtain (4.11), we have to show 

lira lim sup 
NI ~ oo N 2 ~  oo ut,u2,...,u21~ANl_vr~D 

63 ~ logZNl'N2'v(h)l 1=0 
x 63h~----~2. 63h,~,_~,~, 2N,,U~.~(h)]h=OI 

(4.19) 

I now resume the block spin transformation. Taking the constant 
terms [- V(")(h; 0) and I>~n~(h;0)] into account, trace the trajectories 
VO,~(h; gt) and I2(n)(h; 7 t) for N I -  v ~ n ~< n , ,  where n ,  is the smallest 
integer satisfying (3.14)-(3.17). In terms of v ' = n , - N ~ ,  the conditions 
(3.14)-(3.17) are rewritten as 

71s ~< LV'm,/16 
v,~ 

L ,% ~< 716 

(2-  l/4L )V'm,/16 <. 2 N1/4 

717~N1 +v' 
v" = L  x, .  Under the assumption 2 , / m , ~  since # n . = L  m, /16  and ,a.,. v,. 

YI6(16Ly15) 1, the integers 

and 

v'= ~log(167,,/m,)/log L] + 1 

I- log(L4/2)  , log  2 , ] 
N1/>717 V [- 1--~'gL l~176  

satisfy the above conditions. 
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Thus, Proposition 3.2 implies 

log[ Z N,,,v~, ~( h ) /2 Ul,X~,~( h ) ] 

= ~ [ Wr(h) - Wx(h)] - log(Zo/Zo) (4.20) 
Y ~ L n*A 0 

with the bounds (3.18) and (3.19). Note that Zo and 2 o are independent of 
hu]s and that Wx(h) depends only on h,~'s such that L-~V+V')u, 
L (v+~')ve Y (see Section 3.1, Remark 3; and Section 3.2, Remark 1). 
Therefore, it holds that 

6 3 63 Z N b N z , v ( h )  

63h~,2...63h,2,_~,2-----~ ~ log 2N~,N2,~(h ) 

= 2 z(L-(~+V')uss Y , j =  1, 2,..., 21) 
Y c L  n*A 0 

63 
x - -  - -  [ w A h ) -  0 / ~ ( h ) ]  

63hu:=2 3hu2t ,u2t 

where Z is the characteristic function. The above equality combined with 
the bound (3.19) yields 

_0 Z NbNz ,  v( h ) 

63h~2" log o 63h~2~ 1 .2 l  Z N I , N  2 ~(h) h= 

~<718 1 + \  16 // _l L3I~)~*3zL (Nl+v')l/3elc~diam(D) 

where diam(D)=maxx.y~D I x - y ]  and I have used the Cauchy estimate. 
This implies (4.19). 

Thus, I have proved the theorem assuming Proposition 4.1. 

A P P E N D I X  

I prove Proposition 4.1. Let G ~~ and ~o) denote the infinite-volume 
limits of Gm)=G St and 0m)= Gr~ respectively. For Gm), (G1) and (G2) 
can be shown similarly as in refs. 4 and 9. (G3) is trivial. 

A1. Bounds on R o t a t e d  Gaussian Kernels  

Figure 1 shows interacting bonds in 2 3 for the rotated Gaussian 
measure d/~o~0~. Note that G(O) is invariant with respect to translations by 
vectors = 0 (rood 5), while G("), n >/1, has the full translation invariance. In 
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i ! 

~a) (b) 

Fig. 1. The Gauss ian  interactions (bonds)  in the xy  plane are il lustrated for (a) G ~t and 
(b) G ~~ 

what follows, I shall deal with the kernels in the infinite-volume limit. 
Finite-volume versions are obtained as their periodizations. 

One can show the Ornstein-Zernike decay of G (~ from that of G (~ 
putting/~o = m0/16 and replacing 7~ properly. 

Let us show 

I((~ ̀ ' )-  ~)~1 ~ const- (1 + L2"mg) e -3131u-vl (A.1) 

where const is a numerical constant. Assume n ~> 1 and put L = 5 without 
loss of generality. Consider the Fourier transforms of G (n) and G('): 

G.(P) = ~ e-iP"~'(")~,o, p e ~3/2;~3 
u c Z  3 

d . ( p )  = Z ~ ~ ,~,~(n)_oO, p ~ ~3 /2~z '  
u ~ Z  3 

As is easily seen, it holds that 

d . ( p )  = 2 5 -2" (~o (O(p  + 2rcr)/5") 12.(O(p + 2~r)/5")12 
r e  Rn 

where 

(A.2) 

2n(q) = 5-3n 2 e-iq[~ q e ~3/2rc7/3 (A.3) 
lul ~< ( 5 . -  1)/2 

z 5 n -  I S 2  t t r , , and R , =  { (5"-Xs1+rl ,  +r2,  r3) I rl, r2, r3 sl sz are integers such 
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that 1r;/~<(5"-1-1)/2, i=1,2,[r31~(5~-1)/2, and ISll+ls2[~<3}. By 
means of (A.2) and the decomposition 

d.(p) = G.(p) -5 2nGo(5-'Op) (A.4) 
5 - 2@0(5 -'Op) 

y, 

one can derive the lower bound for kG,(p)[: 

2 n  2 - -  1 IG,(p)I ~>const.(1 +5  m0) 

for p in a complex neighborhood of [ - ~ ,  z~] 3 independent of n (see ref. 9). 
This implies (A. 1 ). 

The bound 

F(';) ~< const, e-3~1~-~1 

is obtained similarly as in ref. 9. Note that we have to deal with the case 
n = 0 separately (since 0 (~ does not have translation invariance) and. that 
we cannot assume L = 5. In case n = 0, the boundedness of Go(Op/L)/d~(p) 
yields the necessary estimate. For the bound of fi(,t~/2 see ref. 9. 

In order to estimate ~ ) ,  we have to bound LV2(G~~ 
and L("-I)/2(G(I)C *" 1 G ( n ) - l ) L n  Ix, u. 

A2. Mutual  D i f f erences  

The infinite-volume version of (AG1) is 

[LnG(LO)x,L.y  - -  L@~~ <<. const. L -" [x - Y1.2 

x # y ,  x , y ~ L  "Z 3 (A.5) 

In order to prove (A.5), it suffices to show 

]L 'G~)~,o-(4~(x))  -1 exp(-L'mo(xS)4 ~<const.L-n Ix I 2 (A.6) 

where ( x )  2 = x~ + x 2 + x~. Starting with the expression 

L'G~,~,o=f,q,_<L. ~ d~qeiqXL 2. [2  ~ ( 1 - c o s ~ - ~ ) + m 2 ]  -1 
(2~C) 3 /= 1 

replace (i) the Fourier kernel by ((q)2+L2"m~) ~; (ii) the domain of 
integration Iq[ ~<L'z by (q)<...L'r~; and (iii) the latter by ~3. Then one 
obtains the Fourier expansion of (47z(x)) l exp(-L'rno(x)). In each 
step, the difference can be estimated by virtue of integrations by parts. 
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I next show 

](G(~)-1)h- (~(m-1)~] ~< const- (1 +L2~m2)e -3~ju-~l (A.7) 

It is needed to bound ( ~ . ( p ) - ~ - d . ( p ) - ~  in a complex neighborhood of 
[ _ ~ ,  ~]3. Put L = 5 and write 

d , ( p )  -~ - d, ,(p) ~ = Z , (p ) /Yn (p )  - 2 , ( p ) / Y , ( p )  

where 

Y.(p) = 5~"d.(p)/do(p/5 n) 

P,(p) = 52@.(p)/do(Op/5 ") 

Z.(p) = 52"~do(p~5 ") 

Z.(p) = 52"/~o(0p/5 ") 

In order to bound Y n ( p ) -  ~-n(p), use (A.2) and the analogous expression 
for d~.(p) together with the equality 

OJo(O(P + 2rcr)/5~) (~o((P + 2rcr)/5n) 

do(Op/5") do(p~5") 

= ~in-'(~/S~ dO do(O(O)(p + 2~r)/5") 
~ 0  do(O(O) p/5") 

where O(0) denotes the rotation around the z axis by the angle 0. The 
right-hand side is easily estimated. 

Since (A.7) yields a bound on F ( ~ - I - P  ("~ 1, we can estimate 
F ( n )  - 1 / 2  _ _  / ~ ( n )  - -  1 / 2  and hence F ('~1/2 - p<.)l/~. 

Lastly, ~ < . / _  sC(n~ is estimated similarly as sr 
L1/2(G(~ (11 t)L.x,L.-,y and its dotted version are close to each other 
since both are close to 6xy- The bound on the difference between 
L(n-lV2(GO)C*n IG(n)-I)L~ and its dotted version is obtained in a 
straightforward way. 
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